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Project Summary 

The sea scallop fishery is currently the most valuable single species fishery in the United 
States.  Part of this success stems from a hybrid management strategy that incorporates both a 
spatial component (rotational closed areas) with traditional fishery management approaches.  
While much recent attention has focused on the success of closed areas (e.g. Elephant Trunk 
Closed Area), production from open areas had enabled scallop landings to remain high and 
increase over the past few years.  Regardless of the management approach, experience tells us 
that the need to have good information on scallop distribution and biomass is critical to the 
effective management of the resource.  This is true for both the rotational access areas and the 
areas open to general fishing under day-at-sea (DAS) control. 

For the present study, we conducted fine scale surveys of the New York Bight (NYB) 
and Southern New England/Long Island (SNE) open access areas.  Both of these areas 
represent important resources areas, yet are generally lightly surveyed by NMFS.  The primary 
objective of this proposal was the determination of scallop distribution, abundance and biomass 
in the NYB and the SNE.  In addition, we delineated the shoreward distribution of scallop 
abundance in shallow areas less than 40m but limited by the 13m depth contour, determined 
the relative performance of the NMFS survey dredge in areas with an abundance of sand 
dollars, identify areas of seed scallops, quantified yellowtail bycatch and provide additional 
information regarding the size selectivity and efficiency of the Coonamessett Farm Turtle 
Deflector Dredge (CFTDD) that is currently mandated for use in that area during some times of 
the year. 

Results indicate that the scallop resource in both of the areas is healthy and we were able to 
delineate the shoreward extent of the scallop resource.  Recruitment was observed in both 
surveys, with a more spatial extensive distribution of pre-recruits observed during the SNE 
survey.  Gear performance analyses indicate that in the presence of large numbers of sand 
dollars, the efficiency of the NMFS survey dredge is diminished.  This was especially the case 
during the NYB survey and is supported by both the results of the selectivity analyses and the 
large differences in the estimated biomass for two gears used in the survey. 

 

 

  



Project Background 

The sea scallop, Placopecten magellanicus, supports a fishery that in the 2010 fishing year 

landed 57 million pounds of meats with an ex-vessel value of over US $455 million (Lowther, 

2011).  These landings resulted in the sea scallop fishery being the most valuable single 

species fishery along the East Coast of the United States.  While historically subject to extreme 

cycles of productivity, the fishery has benefited from recent management measures intended to 

bring stability and sustainability.  These measures include: limiting the number of participants, 

total effort (days-at-sea), gear and crew restrictions and most recently, a strategy to improve 

yield by protecting scallops through rotational area closures. 

Amendment #10 to the Sea Scallop Fishery Management Plan officially introduced the 

concept of area rotation to the fishery.  This strategy seeks to increase the yield and 

reproductive potential of the sea scallop resource by identifying and protecting discrete areas of 

high densities of juvenile scallops from fishing mortality.  By delaying capture, the rapid growth 

rate of scallops is exploited to realize substantial gains in yield over short time periods.  In 

addition to the formal attempts found in Amendment #10 to manage discrete areas of scallops 

for improved yield, specific areas on Georges Bank are also subject to area closures.  In 1994, 

17,000 km2 of bottom were closed to any fishing gears capable of capturing groundfish.  This 

closure was an attempt to aid in the rebuilding of severely depleted species in the groundfish 

complex.   Since scallop dredges are capable of capturing groundfish, scallopers were also 

excluded from these areas.  Since 1999, however, limited access to the three closed areas on 

Georges Bank has been allowed to harvest the dense beds of scallops that have accumulated 

in the absence of fishing pressure.  

In order to effectively regulate the fishery and carry out a robust rotational area management 

strategy, current and detailed information regarding the abundance and distribution of sea 

scallops is essential.  Currently, abundance and distribution information gathered by surveys 

comes from a variety of sources.  The annual NMFS sea scallop survey provides a 

comprehensive and synoptic view of the resource from Georges Bank to Virginia.  In contrast to 

the NMFS survey that utilizes a dredge as the sampling gear, the resource is also surveyed 

optically.  Researchers from the School for Marine Science and Technology (SMAST) and the 

Woods Hole Oceanographic Institute (WHOI) are able to enumerate sea scallop abundance and 

distribution from images taken by both a still camera and a towed camera system (Stokesbury, 

et. al., 2004; Stokesbury, 2002).  Prior to the utilization of the optical surveys and in addition to 

the annual information supplied by the NMFS annual survey, commercial vessels were 

contracted to perform surveys.  Dredge surveys of the scallop access areas have been 



successfully completed by the cooperative involvement of industry, academic and governmental 

partners.  The additional information provided by these surveys was vital in the determination of 

appropriate Total Allowable Catches (TAC) in the subsequent re-openings of the closed areas.  

This type of survey, using commercial fishing vessels, provides an excellent opportunity to 

gather required information and also involve stakeholders in the management of the resource. 

With the exception of the annual synoptic surveys (NMFS, SMAST) most survey efforts have 

focused on the estimation biomass in a closed area prior to it’s re-opening to harvest.  Recently, 

the importance of an accurate estimate of scallop abundance in distribution in the open areas 

has become a priority.  Over the last few years, open areas have accounted for a large and 

increasing percentage of overall landings, yet some areas of high effort are only lightly survey 

during the synoptic surveys.  Given the importance of these open areas, it is critical to have 

accurate abundance and distribution information from these areas as well.   

 In addition to collecting data to assess the abundance and distribution of sea scallops in 

the SNE/LI and NYB areas, the operational characteristics of commercial scallop vessels allow 

for the simultaneous towing of two dredges.  As in past surveys, we towed two dredges at each 

station.  One dredge was a NMFS sea scallop survey dredge and the other was a CFTDD.  This 

paired design allowed for the estimation of the size selective characteristics of CFTDD equipped 

with turtle excluder chains.  Gear performance (i.e. size selectivity and relative efficiency) 

information is limited for this dredge design and understanding how this dredge impacts the 

scallop resource will be beneficial for two reasons.  First, it will be an important consideration for 

the stock assessment for scallops in that it provides the size selectivity characteristics of the 

most recent gear configuration and second, this information will support the use of this gear 

configuration to sample closed areas prior to re-openings.  In addition, selectivity analyses using 

the SELECT method provide insight to the relative efficiency of the two gears used in the study 

(Millar, 1992).  The relative efficiency measure from this experiment can be used to refine 

existing absolute efficiency estimates for the New Bedford style scallop dredge and gain insight 

into the performance of the NMFS survey dredge.   

A stated advantage of a sea scallop dredge survey is that one can access and sample 

the target species.  One parameter routinely measured is the shell height:meat weight 

relationship.  While this relationship is used to determine swept area biomass for the area 

surveyed at that time, it can also be used as an indicator of seasonal shifts in biomass due to 

the influence of spawning.  For this reason, data on the shell height:meat weight relationship is 

routinely gathered by both the NMFS and VIMS scallop surveys.  While this relationship may not 

be a direct indicator of animal health in and of itself, long term data sets may be useful in 



evaluating changing environmental conditions, food availability and density dependent 

interactions.  

 For this study, we pursued multiple objectives.  The primary objective was to collect 

information to characterize the abundance and distribution of sea scallops within the SNE/LI and 

NYB areas.  Utilizing the same catch data with a different analytical approach, we estimated the 

size selectivity characteristics of the commercial sea scallop dredge.  In addition, a auxiliary 

component of the selectivity analysis allows for supplementary information regarding the 

efficiency of the commercial dredge relative to the NMFS survey dredge.  As a third objective of 

this study, we collected biological samples to estimate a time and area specific shell 

height:meat weight relationship.  Finally, finfish bycatch data includes information related to the 

incidence of yellowtail flounder, an important bycatch species for the scallop fishery.   

 

Methods 

Survey Area and Sampling Design 

The SNE/LI and NYB areas were surveyed during the course of this project.  The 

boundaries of the survey areas were delineated by both depth and fishery dependent 

information related to the spatial extent of the scallop population.  Based on effort data from the 

fishery we were able to construct sampling domains that presumably fully encompassed the 

distribution of scallops in those broad geographic areas.  We intentionally extended the 

shoreward boundary of both surveys to ensure that we would capture the inshore extent of the 

population.  The inshore depth limit was 15 fathoms for both areas.  Station maps with a 

polygon representing the sampling domains can be found in Figures 1 and 2.  Sampling stations 

for this study were selected within the context of a systematic random grid.  With the patchy 

distribution of sea scallops determined by some unknown combination of environmental 

gradients (i.e. latitude, depth, hydrographic features, etc.), a systematic selection of survey 

stations results in an even dispersion of samples across the entire sampling domain.  The 

systematic grid design was successfully implemented during industry-based surveys since 

1998.   

The methodology to generate the systematic random grid entailed the decomposition of the 

domain (in this case a generated sampling domain) into smaller sampling cells.  The dimensions 

of the sampling cells were primarily determined by a sample size analysis conducted using the 

catch data from survey trips conducted in the same areas during prior years.  Since closed 

areas are of different dimensions and the total number of stations sampled per survey remains 

fairly constant, the distance between the stations varies.  Generally, the distance between 



stations is roughly 3-4 nautical miles.  In this case, because the domains were so large, the 

distance was larger at roughly 4-5 nm.  Once the cell dimensions were set, a point within the 

most northwestern cell was randomly selected.  This point served as the starting point and all of 

the other stations in the grid were based on its coordinates.  The station locations for the 2011 

SNE/LI and NYB surveys are shown in Figures 1 and 2. 

 

Sampling Protocols 

While at sea, the vessels simultaneously towed two dredges.  A NMFS survey dredge, 8 feet 

in width equipped with 2-inch rings, 4-inch diamond twine top and a 1.5-inch diamond mesh 

liner was towed on one side of the vessel.  On the other side of the vessel, a 15 foot CFTDD 

equipped with 4-inch rings, a 10-inch diamond mesh twine top and no liner was utilized.  Turtle 

chains were used in configurations as dictated by the area surveyed and current regulations.  In 

this paired design, it is assumed that the dredges cover a similar area of substrate and sample 

from the same population of scallops.  The dredges were switched to opposite sides of the 

vessel mid-way throughout the trip to help minimize any bias. 

For each survey tow, the dredges were fished for 15 minutes with a towing speed of 

approximately 3.8-4.0 kts.  High-resolution navigational logging equipment was used to 

accurately determine and record vessel position.  A Star-Oddi™ DST sensor was used on the 

dredge to measure and record dredge tilt angle as well as depth and temperature (Figure 3).  

With these measurements, the start and end of each tow was estimated.  Synchronous time 

stamps on both the navigational log and DST sensor were used to estimate the linear distance 

for each tow.  Histograms depicting the estimated linear distances covered per tow both surveys 

are shown in Figure 4.   

Sampling of the catch was performed using the protocols established by DuPaul and 

Kirkley, 1995 and DuPaul et. al. 1989.  For each survey tow, the entire scallop catch was placed 

in baskets.  Depending on the total volume of the catch, a fraction of these baskets were 

measured for sea scallop length frequency.  The shell height of each scallop in the sampled 

fraction was measured on NMFS sea scallop measuring boards in 5 mm intervals.  This protocol 

allows for the estimation of the size frequency for the entire catch by expanding the catch at 

each shell height by the fraction of total number of baskets sampled.  Finfish and invertebrate 

bycatch were quantified, with finfish being sorted by species and measured to the nearest 1 cm.   

Additional samples were taken to determine area specific shell height-meat weight 

relationships.  At roughly 25 randomly selected stations the shell height of 10 randomly selected 

scallops were measured to the nearest 0.1 mm.  These scallops were then carefully shucked 



and the adductor muscle individually packaged and frozen at sea.  Upon return, the adductor 

muscle was weighed to the nearest 0.1 gram.  The relationship between shell height and meat 

weight was estimated using a generalized linear mixed model (gamma distribution, log link) 

incorporating depth as an explanatory variable using PROC GLIMMIX in SAS v. 9.2. The 

relationship was estimated with the following model: 

 

lnMW = lnα + β*lnSH + γ*lnDepth 

 

where MW=meat weight (grams), SH=shell height (millimeters), Depth=depth (meters).   α, β 

and γ are parameters to be estimated. 

The standard data sheets used since the 1998 Georges Bank survey were used.  Data 

recorded on the bridge log included GPS location, tow-time (break-set/haul-back), tow speed, 

water depth, catch, bearing, weather and comments relative to the quality of the tow.  The deck 

log maintained by the scientific personnel recorded detailed catch information on scallops, 

finfish, invertebrates and trash. 

 

Data Analysis 

The catch and navigation data were used to estimate swept area biomass within the area 

surveyed.  The methodology to estimate biomass is similar to that used in previous survey work 

by VIMS.  In essence, we estimate a mean abundance from the point estimates and scale that 

value up to the entire area of the domain sampled.  This calculation is given:   
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Catch weight per tow of exploitable scallops was calculated from the raw catch data as an 

expanded size frequency distribution with an area and depth appropriate shell height-meat 

weight relationship applied (length-weight relationships were obtained from SARC 50 document 

as well as the actual relationship taken during the cruise) (NEFSC, 2010).  Exploitable biomass, 

defined as that fraction of the population vulnerable to capture by the currently regulated 

commercial gear, was calculated using two approaches.  The observed catch at length data 

from the NMFS survey dredge (assumed to be non-size selective) was adjusted based upon the 



size selectivity characteristics of the commercial gear (Yochum and DuPaul, 2008).  The 

observed catch-at-length data from the commercial dredge was not adjusted due to the fact that 

these data already represent that fraction of the population that is subject to exploitation by the 

currently regulated commercial gear.   

Utilizing the information obtained from the high resolution GPS, an estimate of area swept 

per tow was calculated.  Throughout the cruise, the location of the ship was logged every three 

seconds.  By determining the start and end of each tow based on the recorded times as 

delineated by the tilt sensor data, a survey tow can be represented by a series of consecutive 

coordinates (latitude, longitude).  The linear distance of the tow is calculated by: 
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The linear distance of the tow is multiplied by the width of the gear (either 15 or 8 ft.) to result in 

an estimate of the area swept during a given survey tow.   

The final two components of the estimation of biomass are constants and not determined 

from experimental data obtained on these cruises.  Estimates of survey dredge gear efficiency 

have been calculated from a prior experiment using a comparison of optical and dredge catches 

(NEFSC, 2010).  Based on this experiment, an efficiency value for the NMFS survey dredge of 

38% was estimated for the rocky substrate areas on Georges Bank and a value of 44% was 

estimated for the smoother (sand, silt) substrates of some portions of Georges Bank and the 

entire mid-Atlantic.  Estimates of commercial sea scallop dredge gear efficiency have been 

calculated from prior experiments using a variety of approaches (Gedamke et. al., 2005, 

Gedamke et. al., 2004, D. Hart, pers. comm.).  The efficiency of the commercial dredge is 

generally considered to be higher and based on the prior work as well as the relative efficiency 

from the data generated from this study; an efficiency value of 65% was used for the SNE/LI 

and NYB areas.  To scale the estimated mean scallop catch to the full domain, the total areas of 

the SNE/LI and NYB closed areas were calculated in ArcGIS v. 10.0.   

 

Size Selectivity 

The estimation of size selectivity of the CFTDD equipped with 4” rings, a 10” twine top 

and turtle chains was based on a comparative analysis of the catches from the two dredges 

used in the survey.  For this analysis, the NMFS survey dredge is assumed to be non-selective 

(i.e. a scallop that enters the dredge is retained by the dredge).  Catch at length from the 



selective gear (commercial dredge) was compared to the non-selective gear via the SELECT 

method (Millar, 1992).   With this analytical approach, the selective properties (i.e. the length 

based probability of retention) of the commercial dredge were estimated.  In addition to 

estimates of the length based probabilities of capture by the commercial dredge, the SELECT 

method characterizes a measure of relative fishing intensity.  Assuming a known quantity of 

efficiency for one of the two gears (in this case the survey dredge at 44%), insight into the 

efficiency of the other gear (commercial dredge) can be attained. 

 Prior to analysis, all comparative tows were evaluated.  Any tows that were deemed to 

have had problems during deployment or at any point during the tow (flipped, hangs, crossed 

towing wires, etc.) were removed from the analysis.  In addition, tows where zero scallops were 

captured by both dredges were also removed from the analysis.  The remaining tow pairs were 

then used to analyze the size selective properties of the commercial with the SELECT method. 

The SELECT method has become the preferred method to analyze size-selectivity 

studies encompassing a wide array of fishing gears and experimental designs (Millar and Fryer, 

1999).  This analytical approach conditions the catch of the selective gear at length l to the total 

catch (from both the selective gear variant and small mesh control).    
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Where r(l) is the probability of a fish at length l being retained by the gear given contact and p is 

the split parameter, (measure of relative efficiency).  Traditionally selectivity curves have been 

described by the logistic function.  This functional form has symmetric tails.  In certain cases, 

other functional forms have been utilized to describe size selectivity of fishing gears.  Examples 

of different functional forms include Richards, log-log and complimentary log-log.  Model 

selection is determined by an examination of model deviance (the likelihood ratio statistic for 

model goodness of fit) as well as Akaike Information Criterion (AIC) (Xu and Millar, 1993, Sala, 

et. al., 2008).  For towed gears, however, the logistic function is the most common functional 

form observed in towed fishing gears.  Given the logistic function: 
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by substitution: 
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Where a, b, and p are parameters estimated via maximum likelihood.  Based on the parameter 

estimates, L50 and the selection range (SR) are calculated.   
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 Where L50 defines the length at which an animal has a 50% probability of being retained, given 

contact with the gear and SR represents the difference between L75 and L25 which is a measure 

of the slope of the ascending portion of the logistic curve.  

 In situations where catch at length data from multiple comparative tows is pooled to 

estimate an average selectivity curve for the experiment, tow by tow variation is often ignored.  

Millar et al. (2004) developed an analytical technique to address this between-haul variation and 

incorporate that error into the standard error of the parameter estimates.  Due to the inherently 

variable environment that characterizes the operation of fishing gears, replicate tows typically 

show high levels of between-haul variation.  This variation manifests itself with respect to 

estimated selectivity curves for a given gear configuration (Fryer 1991, Millar et. al., 2004).  If 

not accounted for, this between-haul variation may result in an underestimate of the uncertainty 

surrounding estimated parameters increasing the probability of spurious statistical significance 

(Millar et. al., 2004).   

 Approaches developed by Fryer (1991) and Millar et. al., (2004) address the issue of 

between-haul variability.  One approach formally models the between-haul variability using a 

hierarchical mixed effects model (Fryer 1991).  This approach quantifies the variability in the 

selectivity parameters for each haul estimated individually and may be more appropriate for 

complex experimental designs or experiments involving more than one gear.  For more 

straightforward experimental designs, or studies that involve a single gear, a more intuitive 

combined-haul approach may be more appropriate. 

 This combined-hauls approach characterizes and then calculates an overdispersion 

correction for the selectivity curve estimated from the catch data summed over all tows, which is 



identical to a curve calculated simultaneously to all individual tows.  Given this identity, a 

replication estimate of between-haul variation (REP) can be calculated and used to evaluate 

how well the expected catch using the selectivity curve calculated from the combined hauls fits 

the observed catches for each individual haul (Millar et. al. 2004).   

 REP is calculated as the Pearson chi-square statistic for model goodness of fit divided 

by the degrees of freedom. 

 

d

Q
REP   

 

Where Q is equal to the Pearson chi-square statistic for model goodness of fit and d is equal to 

the degrees of freedom.  The degrees of freedom are calculated as the number of terms in the 

summation, minus the number of estimated parameters.  The calculated replicate estimate of 

between-haul variation was used to calculate observed levels of extra Poisson variation by 

multiplying the estimated standard errors by REP .  This correction is only performed when the 

data is not overdispersed (Millar, 1993). 

 

A significant contribution of the SELECT model is the estimation of the split parameter 

which estimates the probability of an animal “choosing” one gear over another (Holst and Revill, 

2009).  This measure of relative efficiency, while not directly describing the size selectivity 

properties of the gear, is insightful relative to both the experimental design of the study as well 

as the characteristics of the gears used.  A measure of relative efficiency (on the observational 

scale) can be calculated in instances where the sampling intensity is unequal.  In this case, the 

sampling intensity is unequal due to differences in dredge width.  Relative efficiency can be 

computed for each individual trip (Park et. al., 2007). 

 

 

 

 

Where p is equal to the observed (estimated p value) and p0 represents the expected value of 

the split parameter based upon the dredge widths in the study.  For this study, a 15 ft. 

commercial dredge was used with expected split parameter of 0.6521.  The computed relative 

efficiency values were then used to scale the estimate of the NMFS survey dredge efficiency 

obtained from the optical comparisons (44%).  Computing efficiency for the estimated p value 
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from Yochum and DuPaul (2008) yields a commercial dredge efficiency of 64%.  That work was 

conducted throughout the range of the scallop in areas (Georges Bank) where dredge efficiency 

is expected to be lower.  Preliminary observations suggest a slightly higher relative efficiency of 

the CFTDD relative to the standard New Bedford style scallop dredge.  This selectivity analysis 

will provide an additional piece of evidence related to the efficiency of the CFTDD.  

Preliminary analysis of data obtained on prior scallop surveys indicates that the NMFS 

survey dredge performs poorly when filled with sand dollars.  The dredge bag appears to form a 

ball which lifts the bail and cutting bar off the bottom resulting in poor scallop catches relative to 

the commercial dredge.  This characteristic of the survey dredge may result in an underestimate 

of scallop abundance in a given area.  By examining the estimated selectivity parameters (L50, 

SR and p) values with respect to concurrent sand dollar catch we were able to depict trends in 

those relationships and demonstrate the extent at which the performance of the dredges are 

affected.  This was accomplished by individually fitting tows that had sufficient scallops to 

provide realistic selectivity parameters and then regress those parameters against an estimate 

of survey dredge fullness with sand dollars. 

 

Results 

Abundance and distribution 

The survey cruises to the SNE/LI and NYB areas were completed in June and August of 

2011, respectively.  Summary statistics for the cruises are shown in Table 1.  Length frequency 

distributions for the scallops captured during the SNE/LI and NYB surveys are shown in Figures 

5 and 6.  Maps depicting the spatial distribution of the catches of pre-recruit (<70 mm shell 

height), and fully recruited (≥70mm shell height) scallops from both the commercial and survey 

dredges are shown in Figures 7-14.  Mean total and mean exploitable scallop densities for both 

the survey and commercial dredges are shown in Table 2.  This information expanded to the 

area of the entire SNE/LI and NYB closed areas and representing an estimate of the total 

number of animals in the area is shown in Table 3.  The mean estimated scallop meats weight 

for both the commercial and survey dredges for both of the shell height:meat weight 

relationships used is shown in Table 4.  Mean catch (in grams of scallop meat) for the two 

dredge configurations as well as the two shell height: meat weight relationships are shown in 

Table 5.  Total and exploitable biomass for both shell height:meat weight relationships and 

levels of assumed gear efficiency are shown in Tables 6 and 7 (total biomass is not estimated 

due to the selective properties of the commercial gear).  Shell height-meat weight relationships 

were generated for the area.  The resulting parameters as well as the parameters from SARC 



50 are shown in Table 8.  Comparative plots of the two curves for each area are shown in 

Figure 15.  Catch per unit effort (CPUE) of finfish bycatch is shown in Table 9.  The distribution 

and abundance of yellowtail flounder captured by the commercial dredge is shown in Figure 16. 

 

Size selectivity 

 The catch data was evaluated by the SELECT method with a variety of functional forms 

(logistic, Richards, log-log) in an attempt to characterize the most appropriate model.  

Examination of residual patterns model deviance and AIC values indicated that for both cruises 

the logistic curve provided the best fit to the data.  An additional model run was conducted to 

determine whether the hypotheses of equal fishing intensity (i.e. the two gears fished with 

equally) were supported.  Output for model runs for the logistic function with the split parameter 

(p) both held fixed at the expected value based on gear width and with p being estimated is 

shown in Table 10.  Visual examination of residuals and values of model deviance and AIC 

indicated that in all cases, the model with an estimated split parameter provided the best fit to 

the data.  Fitted curves and deviance residuals for the SNE/LI and NYB cruises are shown in 

Figures 17-18.  Estimated parameters for the final model run excluding tows with less than 50 

total scallop caught is shown in Table 11.  For the SNE cruise, the estimated L50 value was 

102.6 mm and the selection range was 22.21 mm.  For the NYB cruise, the estimated L50 value 

was 115.6 mm and the selection range was 12.25 mm.   It should be noted that the overall catch 

of scallops in the NYB cruise was fairly low for the survey dredge and that had an impact on the 

resulting estimates from that cruise.  Final selectivity curves for these data sets are shown in 

Figures 19.   A plot comparing the estimated selectivity parameters relative to the degree of 

survey dredge filling with sand dollars is shown in Figure 20. 

The analysis that estimated the relative efficiency of the two gears based upon the 

expected and observed split parameter values resulted in an relative efficiency value of 2.052 

and 5.563 for the SNE and NYB cruises respectively.  Assuming the survey dredge operates 

with 44% efficiency, the expected value for the efficiency of the commercial dredge was 90.2% 

and 244.9%, respectively.  These results are clearly very different from prior experiments and 

suggest a change in the relative efficiency and perhaps a deviation from the assumption of 44% 

efficiency of the survey dredge. 

 

Discussion 

Fine scale cooperative surveys are an important endeavor.  These surveys provide 

information about subsets of the resource that may not have been subject to intensive sampling 



by other efforts.  This type of survey serves an important function in that the results can be used 

to redefine the spatial extent of the population and determine whether large numbers of the 

target organism are present outside of the traditional survey domain.   Finally, this type of 

survey is important in that it involves the stakeholders of the fishery in the management of the 

resource.   

Our results suggest that for the SNE/LI and NYB areas, significant biomass exists in areas 

that have traditionally been lightly surveyed.  These results will provide some basis for the 

possible reconfiguration of the survey strata or at least a re-allocation of effort to capture the 

current distribution of scallops in the surveyed areas.  For areas that had been dominated by a 

large size class, there appears to have been some recruitment in the areas and that the age 

distribution suggests incoming year classes may support further commercial landings from 

these areas.  While fairly widespread and numerous in the SNE, these size classes, however, 

were spatially limited in the NYB and their overall extent in that area was not remarkable.  

Overall, finfish bycatch was generally low and yellowtail flounder bycatch in particular was 

limited in scale and spatially centered on an area between Martha’s Vineyard and Block Island.   

 The use of commercial scallop vessels in a project of this magnitude presents some 

interesting challenges.  One such challenge is the use of the commercial gear.  This gear is not 

designed to be a survey gear; it is designed to be efficient in a commercial setting.  The design 

of this current experiment however provides insight into the utility of using a commercial gear as 

a survey tool.  One advantage of the use of this gear is that the catch from this dredge represent 

exploitable biomass and no further correction is needed.  A disadvantage lies in the fact that 

there is very little ability of this gear to detect recruitment events.  However, since this survey 

also utilizes a lined survey dredge, a mechanism to detect recruitment also exists.     

The concurrent use of two different dredge configurations provides a means to detect 

recruitment, test for agreement of results between the two gears and simultaneously conduct 

size selectivity experiments.  In this instance, our experiment provided information regarding a 

recently mandated change to the commercial gear (CFTDD).  While the expectation was that 

these changes should not affect the size selectivity characteristics of the gear (i.e. L50 and SR), 

as these characteristics are primarily determined by ring and mesh sizes, the possibility exists 

that the overall efficiency will be altered by different dredge frame design.  Our results were 

indeed similar to those of Yochum and DuPaul (2008) with respect to L50 and SR, with the 

exception of the L50 value from the NYB survey.  Our estimated p values were significantly 

higher than what was reported in Yochum and DuPaul (2008).  These results suggests a couple 

of possible processes.  The first would be that we observed an increase in relative efficiency as 



a result of the modified dredge frame especially in the smoother substrate of the mid-Atlantic.  

Secondly, it could be that the survey dredge which acts as a control in the selectivity experiment 

suffers from a reduction in efficiency as a result of large catches of sand dollars.  This is 

supported by the results in Figure 20 and suggests that the assumption of stable survey dredge 

efficiency might be erroneous.  Results seem to support an intuitive explanation of the effect of 

the dredge filling with sand dollars.  That process appears to do two things to the dredge.  First 

in the case of the survey dredge, the bag becomes so full with sand dollars that simply no more 

material can fit in the bag and it is regurgitated out the mouth. . While not quite as extreme, a 

smaller mass of sand dollars serves to raise the bale and sweep chain off the sea floor reducing 

efficiency.  In the case of the commercial dredge, the dredge functions to expectation up to a 

point, but when large numbers of sand dollars begin to be retained by the dredge, the selective 

characteristics change (i.e. L50 decreases and SR increases) as the rings become clogged and 

retain smaller scallops than expected.  At some point the efficiency of the commercial dredge 

will also decrease as a result of the same processes that impact the survey dredge.  At that 

point the relative efficiency will decrease as the efficiency of both dredges decrease in kind.  

The analyses depicted in Figure 20 support this hypothesis and show a decreasing L50 as 

dredge fullness increases.  In addition, SR is shown to increase as the dredge fills with sand 

dollars.  With respect to the split parameter, p, it appears that as the survey dredge fills with 

sand dollars there is a general decrease in relative efficiency.  As the density of sand dollars is 

so great that both dredges begin to fill, then there is a decrease in the efficiency of both dredges 

and the relative difference is reduces as demonstrated by the decrease in estimated p at high 

dredge fullness values. 

One caveat, however, is that for the NYB trip in particular and both trips in general, overall 

catch was low which precluded a selectivity analysis that estimates selectivity parameters on a 

tow by tow basis. With this analysis, covariates can be examined and their degree of influence 

on parameter estimates quantified.  The data was simply too limited to complete that type of 

analysis and a simpler regression type approach was used.  Given the major role that dredge 

efficiency plays in the estimates of biomass from dredge surveys, it is clear that this topic is of 

critical importance its refinement be a high priority. 

Biomass estimates are sensitive to other assumptions made about the biological 

characteristics of the resource; specifically, the use of appropriate shell height-meat weight 

parameters.  There is however, a large variation in this relationship as a result of many factors.  

Seasonal and inter-annual variation can result in some of the largest differences in shell height-

meat weight values.  Traditionally, when the sea scallop undergoes its annual spawning cycle, 



metabolic energy is directed toward the production of gametes and the somatic tissue of the 

scallop is still recovering and is at some of their lowest levels relative to shell size (Serchuk and 

Smolowitz, 1989).  While accurately representative for the month of the survey, biomass has the 

potential to be different relative to other times of the year.  For comparative purposes, our 

results were also shown using the parameters from SARC 50 (NEFSC, 2010).  These 

parameters reflect larger geographic regions (mid-Atlantic) and are collected during the summer 

months.  This allowed a comparison of results that may be reflective of some of the variations in 

biomass due to the fluctuations in the relationship between shell height and adductor muscle 

weight.  Parameters generated from data collected during the course of the study were 

appropriate for the area and time sampled and in general showed larger meats relative to shell 

than the SARC 50 relationships.  The high yield from these areas has been observed and 

exploited by industry and may result from a general shallower depth profile, or some 

environmental factor that promotes above average animal condition.  The SARC 50 relationship 

has traditionally not included samples from this area, and as a result, may not capture the 

potential unique characteristics of those areas. It must be noted that our results are only a 

snapshot in both time and space and do not capture long term averages as well as the SARC 

50 relationships.  Area and time specific shell height-meat weight parameters are another topic 

that merits consideration. 

The survey of the SNE/LI and NYB areas during the summer of 2011 provided a high-

resolution view of the resource in these areas.  The SNE/LI and NYB areas are unique in that 

they will play a critical role in the management strategy of the sea scallop resource over the next 

few years.  With the closed areas of the mid-Atlantic (Elephant Trunk and DelMarVa) nearing 

the end of their rotational cycles, the SNE/LI and NYB areas will become increasingly more 

important.  While the data and subsequent analyses provide an additional source of information 

on which to base management decisions, it also highlights the need for further refinement of 

some of the components of industry based surveys.  The use of industry based cooperative 

surveys provides an excellent mechanism to obtain the vital information to effectively regulate 

the sea scallop fishery. 
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Table 1  Summary statistics for the survey cruise. 

 
 
 

Area Cruise dates 

Number of stations 
included in biomass 

estimate (survey 
dredge) 

Number of stations 
included in biomass 

estimate (comm. 
dredge) 

Southern New England/Long 
Island 

June 25-30, 2011 103 103 

New York Bight 
August 31-Sept. 

6, 2011 
101 101 

 
  



Table 2  Mean total and mean exploitable scallop densities observed during the 2011 
cooperative sea scallop surveys of SNE/LI and NYB.  

 
 
 

 Efficiency 
Average Total Density 

(scallops/m^2) 
SE 

Average Density of 
Exploitable Scallops 

(scallops/m^2) 
SE 

SNE      

Commercial 65%   0.041 0.004 

Survey 44% 0.061 0.006 0.036 0.004 

      

NYB      

Commercial 65%   0.018 0.002 

Survey 44% 0.015 0.003 0.008 0.001 

 
  



Table 3  Estimated number of scallops in the area surveyed.  The estimate is based upon the 
estimated density of scallops at commercial dredge efficiency of 65% and survey dredge 
efficiency of 44%.  The spatial extent of the survey areas were estimated at 11,203 km^2 
(SNE/LI) and 7,634 km^2 (NYB). 
 
 

 Efficiency Estimated Total  Estimated Total Exploitable 

SNE    

Commercial 65%  455,277,587 

Survey 44% 680,541,651 400,618,210 

    

NYB    

Commercial 65%  134,887,158 

Survey 44% 112,544,513 63,676,272 

 
  



Table 4  Estimated average scallop meat weights for the area surveyed.  Estimated weights are 
for the total size distribution of animals as represented by the catch from the NMFS survey 
dredge as well as the mean weight of exploitable scallops in the area as represented by the 
catches from both the survey and commercial dredge.  Length:weight relationships from both 
SARC 50 as well as that observed from the cruise are shown. 
 

 
 

SH:MW 
Mean Meat Weight (g) 

 Total scallops 
Mean Meat Weight (g) 
 Exploitable scallops 

SNE    

Commercial SARC 50 MAB  31.98 

Survey SARC 50 MAB 24.70 31.05 

    

Commercial VIMS DEPTH 
WEIGHTED  38.32 

Survey VIMS DEPTH 
WEIGHTED 30.05 37.26 

    

NYB    

Commercial SARC 50 MAB  45.15 

Survey SARC 50 MAB 26.19 36.07 

    

Commercial VIMS DEPTH 
WEIGHTED  49.49 

Survey VIMS DEPTH 
WEIGHTED 31.13 41.38 

 
  



Table 5  Mean catch of sea scallops observed during the 2011 VIMS-Industry cooperative 
surveys.  Mean catch is depicted as a function of various shell height meat weight relationships, 
either an area specific relationship derived from samples taken during the survey, or a 
relationship from SARC 50. 
 
   

 
Samples SH:MW 

Mean Total 
(grams/tow) 

Standard Error 

SNE     

Survey 103 SARC 50 MAB 2,857.30 270.06 

      

Survey 
103 

VIMS DEPTH 
WEIGHTED 

3,476.56 333.53 

     

NYB     

Survey 101 SARC 50 MAB 764.99 120.01 

      

Survey 
101 

VIMS DEPTH 
WEIGHTED 

909.23 148.69 

 
 
 

 
Samples SH:MW 

Mean Exploitable 
(grams/tow) 

Standard Error 

SNE     

Commercial 103 SARC 50 MAB 6,864.01 548.81 

Survey 103 SARC 50 MAB 2,112.52 192.74 

      

Commercial 
103 

VIMS DEPTH 
WEIGHTED 8,222.86 663.62 

Survey 
103 

VIMS DEPTH 
WEIGHTED 2,534.83 233.10 

     

NYB     

Commercial 101 SARC 50 MAB 4,420.95 546.15 

Survey 101 SARC 50 MAB 597.60 87.73 

      

Commercial 
101 

VIMS DEPTH 
WEIGHTED 4,845.92 605.90 

Survey 
101 

VIMS DEPTH 
WEIGHTED 685.55 103.61 

 
  



Table 6  Estimated total biomass of sea scallops observed during the 2011 VIMS-Industry 
cooperative surveys.  Biomass is presented as a function of different shell height meat weight 
relationships, either an area specific relationship derived from samples taken during the actual 
survey or a relationship from SARC 50.     

 
 
 

 SH:MW Efficiency 
Total 

Biomass 
(mt) 

95% CI 
Lower 
Bound 
95% CI 

Upper 
Bound 
95%CI 

SNE       

Survey SARC 50 MAB 44% 16,676.32 2,049.23 14,627.08 18,725.55 

Survey VIMS DEPTH 
WEIGHTED 

44% 
20,290.58 2,530.82 17,759.76 22,821.40 

       

NYB       

Survey SARC50 MAB 44% 2,927.79 597.15 2,330.64 3,524.94 

Survey VIMS DEPTH 
WEIGHTED 

44% 
3,479.81 739.86 2,739.95 4,219.68 

  



Table 7  Estimated exploitable biomass of sea scallops observed during the 2011 VIMS-
Industry cooperative surveys.  Biomass is presented as a function of different shell height meat 
weight relationships, either an area specific relationship derived from samples taken during the 
actual survey or a relationship from SARC 50.     

 
 
 

 SH:MW Efficiency 
Exploitable 

Biomass 
(mt) 

95% CI 
Lower 
Bound 
95% CI 

Upper 
Bound 
95%CI 

SNE       

Commercial SARC 50 MAB 65% 14,463.07 1,827.35 12,635.72 16,290.42 

Survey SARC 50 MAB 44% 12,329.52 1,462.47 10,867.04 13,791.99 

       

Commercial VIMS DEPTH 
WEIGHTED 

65% 
17,326.29 2,209.62 15,116.67 19,535.91 

Survey VIMS DEPTH 
WEIGHTED 

44% 
14,794.29 1,768.78 13,025.51 16,563.07 

       

NYB       

Commercial SARC 50 MAB 65% 6,108.53 1,192.47 4,916.06 7,300.99 

Survey SARC 50 MAB 44% 2,287.13 436.52 1,850.61 2,723.65 

       

Commercial VIMS DEPTH 
WEIGHTED 

65% 
6,695.72 1,322.92 5,372.80 8,018.64 

Survey VIMS DEPTH 
WEIGHTED 

44% 
2,623.77 515.57 2,108.20 3,139.33 

 
  



Table 8   Summary of area specific shell height-meat weight parameters used in the analyses.  
Parameters were obtained from two sources: (1) samples collected during the course of the 
surveys, and (2) SARC 50 (NEFSC, 2010).   
 
 

 
 Date α β γ δ 
Survey Data      

SNE/LI June, 2011 -8.8079 2.7546 -0.1859  

NYB Sept., 2011 -7.8163 2.5077 -0.1343  

      

SARC 50      

Mid-Atlantic general  -16.88 4.64 1.57 -0.43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

________________________________________________________________________ 

*The length weight relationship for sea scallops from data collected on the cruise is modeled as: 

 
 W=exp(α+ β*ln(L) + γ*ln(D)) 
 
For SARC 50 (mid-Atlantic) an interaction term is included in the model as follows: 
 
 W=exp(α+ β*ln(L) + γ*ln(D) + δ*ln(L)*ln(D)) 
 
Where W is meat weight in grams, L is scallop shell height in millimeters (measured from the umbo to the 
ventral margin) and D is depth in meters.  

  



Table 9 Catch per unit effort (a unit of effort is represented by one standard survey tow of 15 
minute duration at 3.8-4.0 kts.) of finfish bycatch encountered during the survey of the SN/LI 
and NYB areas during 2011.  In total, finfish bycatch was measured and recorded for 103 and 
101 survey tows on the SNE/LI and NYB trips, respectively. 
 
 

Southern New England 
 

Common Name Scientific Name Commercial Dredge Survey Dredge 

Unclassified Skates Raja spp. 42.14 15.30 

Barndoor Skate Raja laevis 0.34 0.12 

American Plaice Hippoglossoides platessoides 0.00 0.04 

Summer Flounder Paralichtys dentatus 0.01 0.03 

Fourspot Flounder Paralichtys oblongotus 1.10 3.57 

Yellowtail Flounder Limanda ferruginea 1.43 1.55 

Blackback Flounder Psuedopleuronectes americana 0.28 0.49 

Witch Flounder Glyptocephalus cynoglossus 0.00 0.02 

Windowpane Flounder Scophthalmus aquasus 0.36 0.23 

Monkfish Lophius americanus 1.66 0.70 

 

 

 

 
New York Bight 
 

Common Name Scientific Name Commercial Dredge Survey Dredge 

Unclassified Skates Raja spp. 26.66 8.92 

Summer Flounder Paralichtys dentatus 0.20 0.10 

Fourspot Flounder Paralichtys oblongotus 0.19 1.41 

Yellowtail Flounder Limanda ferruginea 0.00 0.02 

Blackback Flounder Psuedopleuronectes americana 0.02 0.02 

Windowpane Flounder Scophthalmus aquasus 3.86 1.50 

Monkfish Lophius americanus 0.23 0.10 

 

  



Table 10  Selection curve parameter estimates and hypotheses test.  Selectivity data for each 
cruise was evaluated by a logistic curve with and without the split parameter (p) estimated.  
Improvements with respect to model fit were assessed by an examination of model deviance 
and AIC values.  
 
 
Southern New England/Long Island 
 

  

 
Fixed p 

Estimated 
p 

a -10.8824 -10.0661 

b 0.1422 0.09801 

p 0.5 .7822 

L25 68.80 91.49 

L50 76.52 102.69 

L75 84.25 113.90 

Selection 
Range (SR) 

15.45 22.41 

Model Deviance 63.84 2.67 

Degrees of 
Freedom 

28 27 

AIC 126.2 64.9 

 
New York Bight 

  

 
Fixed p 

Estimated 
p 

a -27.854 -20.8526 

b 0.2622 0.1804 

p 0.5 0.9065 

L25 102.02 109.51 

L50 106.21 115.6 

L75 110.40 121.7 

Selection 
Range (SR) 

8.37 12.17 

Model Deviance 73.9 1.15 

Degrees of 
Freedom 

30 29 

AIC 107.1 36.3 



Table 11 Estimated logistic SELECT model fit for tows with total catch of greater than 50 
scallops.  Estimated parameters a, b and p as well as the length at 50% retention (L50) and 
Selection Range (SR) are shown.  The number of valid tows, as well as the replication estimate 
of between-haul variation (REP) is shown.  These data sets were determined to not be 
overdispersed and did not require an adjustment to the standard errors. 
 

 
 
Southern New England/Long Island 
 

 SNE/LI 

Length Classes  

a -10.1521 2.98 

b 0.0989 0.03 

p 0.7822 0.05 

L50 102.6 3.01 

Selection Range  22.21 2.97 

REP N/A 

# of tows in analysis 100 

 
 
 
 
 
 
 
New York Bight 
 

 NYB 

Length Classes 45-155 

a -20.743 7.79 

b 0.1793 0.07 

p 0.9069 0.04 

L50 115.6 9.41 

Selection Range  12.25 5.85 

REP N/A 

# of tows in analysis 80 

 

 

 

 

 

 

 

 



Figure 1  Locations of sampling stations for the Southern New England/Long Island survey conducted by the F/V Celtic during June, 
2011.   

 



Figure 2  Locations of sampling stations for the New York Bight survey conducted by the F/V 
Kathy Ann during August-September, 2011.   

 



Figure 3  An example of the output Star-Oddi™ DST sensor.  Arrows indicate the interpretation 

of the start and end of the dredge tow 
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Figure 4 Histogram of calculated tow lengths from the 2011 surveys of SNE/LI and NYB.  Mean 
tow length for the SNE/LI survey was 1788.6 m with a standard deviation of 65.0 m.  Mean tow 
length for the NYB survey was 1859.1 m with a standard deviation of 47.0 m. 
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Figure 5  Shell height frequencies for the two dredge configurations used to survey the 
Southern New England/Long Island area during June of 2011.  The frequencies represent the 

expanded but unadjusted catches of the two gears for all sampled tows. 
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Figure 6  Shell height frequencies for the two dredge configurations used to survey the New 
York Bight area during early September, 2011.  The frequencies represent the expanded but 
unadjusted catches of the two gears for all sampled tows. 
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Figure 7  Spatial distribution of sea scallop catches on survey cruise of Southern New England/Long Island during June, 2011 by the 
NMFS survey dredge.  This figure represents the catch of pre-recruit sea scallops (<70mm). 
 

 



Figure 8  Spatial distribution of sea scallop catches on survey cruise of Southern New England/Long Island during June, 2011 by the 
NMFS survey dredge.  This figure represents the catch of recruit sea scallops (>70 mm). 

 



Figure 9  Spatial distribution of sea scallop catches on survey cruise of Southern New England/Long Island during June, 2011 by the 
CFTDD.  This figure represents the catch of pre-recruit sea scallops (<70mm). 
 

 



 
Figure 10  Spatial distribution of sea scallop catches on survey cruise of Southern New England/Long Island during June, 2011 by 
the CFTDD.  This figure represents the catch of recruit sea scallops (>70 mm). 



 

 
Figure 11  Spatial distribution of sea scallop catches on survey cruise of New York Bight during 
September, 2011 by the NMFS survey dredge.  This figure represents the catch of pre-recruit 
sea scallops (<70mm). 
 

 



 
Figure 12  Spatial distribution of sea scallop catches on survey cruise of New York Bight during 
September, 2011 by the NMFS survey dredge.  This figure represents the catch of recruit sea 
scallops (>70 mm). 
 
 

 



 
Figure 13  Spatial distribution of sea scallop catches on survey cruise of New York Bight during 
September, 2011 by the NMFS survey dredge.  This figure represents the catch of pre-recruit 
sea scallops (<70mm). 
 

 
 



Figure 14  Spatial distribution of sea scallop catches on survey cruise of New York Bight during 
September, 2011 by the NMFS survey dredge This figure represents the catch of recruit sea 
scallops (>70 mm). 
 

 



Figure 15  Shell height:meat weight relationships used in the study.  The SARC-50 curve is an 
area specific curve for the entire mid-Atlantic area.  The VIMS-2011 curves are based on 
samples taken during the survey and is specific for the eacharea during the time of the cuise.   
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Figure 16  Spatial distribution of yellowtail flounder bycatch survey cruise of Southern New England/Long Island during June, 2011 
by the CFTDD.  This figure represents the total catch of yellowtail flounder at each tow. 
 



 
Figure 17  Top Panel: Logistic SELECT curves fit to the proportion of the total catch in the 

commercial dredge relative to the total catch (survey and commercial) for 2011 cruise to the 

SNE/LI.  Bottom Panel: Deviance residuals for the model fit. 
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Figure 18  Top Panel: Logistic SELECT curves fit to the proportion of the total catch in the 

commercial dredge relative to the total catch (survey and commercial) for 2011 cruise to the 

NYB.  Bottom Panel: Deviance residuals for the model fit. 
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Figure 19  Estimated selectivity curves for the CFTDD based on data from the 2011 surveys of 

the SNE/LI (top panel) and NYB (bottom panel). 

Shell Height (mm)

0 20 40 60 80 100 120 140 160 180

R
e

te
n

ti
o

n
 P

ro
b

a
b

il
it

y
C

o
m

m
e

rc
ia

l 
D

re
d

g
e

0.00

0.25

0.50

0.75

1.00

 
 

Shell Height (mm)

0 20 40 60 80 100 120 140 160 180

R
e
te

n
ti

o
n

 P
ro

b
a
b

il
it

y
C

o
m

m
e
rc

ia
l 

D
re

d
g

e

0.00

0.25

0.50

0.75

1.00

 
  



Figure 20 Selectivity parameters (L50, SP and p) as a function of percentage of survey dredge 

filling with sand dollar for tows on both cruises where individual tow model fits could be 

obtained. Polynomial fits with 95% confidence intervals are shown to depict relationships 

between the parameters and degree of filling 
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